What is Toxic Black Mold?
A Collection of articles on MoldMolds (and mildew) are fungi. Fungi are neither plant nor animal but, since 1969, have their own kingdom. The fungi kingdom includes such wonderful organisms as the delicious edible mushrooms, the makers of the "miracle drug" penicillin and the yeast that makes our bread rise and our fine wines ferment. Biologically, all fungi have defined cell walls, lack chlorophyll and reproduce by means of spores. Approximately 100,000 species of fungi have been described and it is estimated that there are at least that many waiting to be discovered. The vast majority of fungi feed on dead or decaying organic matter – they are one of the principle agents responsible for the natural recycling of dead plant and animal life.The most common fungi are ubiquitous within our environment and we are constantly exposed to them. For the most part, however, diseases caused by these common fungi are relatively uncommon and are rarely found in individuals with normally functioning immune systems. Nonetheless, mold has recently experienced high profile press coverage. There are a variety of inflammatory press reports concerning lawsuits over air quality in homes, courthouses and other buildings; parental concerns regarding school classroom environments; home insurers refusing to cover mold damage; and widely distributed news reports on so-called "toxic mold." But don't panic. Mold can be managed effectively in most cases and this guide will help you do that. Critical RequirementsThere are 4 critical requirements for mold growth – available mold spores, available mold food, appropriate temperatures and considerable moisture. The removal of any one of these items will prohibit mold growth. Let's examine each requirement, one-by-one. Mold Spores. Ranging in size from 3 to 40 microns (human hair is 100-150 microns), mold spores are ubiquitous – they are literally everywhere. There is no reasonable, reliable and cost-effective means of eliminating them from environments that humans inhabit. So, trying to control mold growth through the elimination of mold spores is not feasible.Mold Food. If all three other requirements are met, almost any substance that contains carbon atoms (organic substance) will provide sufficient nutrients to support mold growth. Even the oil from your skin that is left when you touch an otherwise unsuitable surface, like stainless steel, or the soap residue left from a good cleaning will provide sufficient nutrients to support the growth of some molds. And many of the most common materials found in homes like wood, paper and organic fibers are among the most preferred of mold nutrients. Thus, eliminating mold food from your environment is a virtually impossible task.Appropriate Temperatures. Unfortunately, most molds grow very well at the same temperatures that humans prefer. In addition, anyone who has cleaned out their refrigerator quickly realizes that temperatures close to freezing are not cold enough to prevent mold growth and temperatures that are much warmer than humans prefer, like those of the tropics, will grow abundant quantities of mold. Therefore, it is not feasible to control mold growth in our home environment through the control of temperature.Considerable Moisture. Most molds requires the presence of considerable moisture for growth. Obviously, the word "considerable" is key here. The mycologists (fungi scientists) refer to "water activity" when describing the required conditions for mold growth. The various species of mold have different water activity requirements. A material's "water activity" is equivalent to the relative humidity of the air that would be in equilibrium with the material at that material moisture content. The vast majority of mold species require "water activity" levels that are equivalent to material equilibrium moisture contents corresponding to relative humidities of at least 70. In fact, the great majority of serious, large mold outbreaks inside buildings occur where porous, cellulose-type materials have literally been kept wet by liquid water or sustained condensation.Human beings prefer humidities that are below the critical relative humidity for mold growth. Thus, of the four basic requirements for mold growth, moisture availability is by far the easiest mold growth requirement to control in environments that humans like to inhabit. As you will see from the remainder of this guide, and from the vast majority of the literature on mold control, the consensus regarding effective mold control strategies consists of the combination of reducing the availability of moisture and killing and removing active mold growth colonies.Determining if You Have MoldCommon household molds have a characteristic "musty" or "earthy" smell, somewhat like the forest floor deep in the woods. Growing colonies of mold can also be visually observed in many cases. Most people are familiar with moldy bread or mold growth on cheese or other food products that have been kept too long, so the "green fuzzy" characteristic of most mold growth is familiar. And those who have lived in Florida have heard the expression "green shoe syndrome" which refers to the fact that mold is particularly fond of leather products left unused for periods of time in dark humid places.Although most active mold colonies appear greenish to black (typical of mold growing on bathroom tile grout) in color, the characteristics of mold colonies growing behind vinyl wall covering in buildings takes on very different characteristics. These mold outbreaks typically result in pinkish to yellowish staining of the wall covering. They are quite important because they indicate serious, detrimental moisture accumulations within the gypsum wallboard behind the wall covering that can not be removed by your air conditioning or dehumidification systems. Where these problems appear, they usually require the assistance of a professional equipped with pressure measurement and other diagnostic equipment to determine the source(s) of the moisture causing the problem.Practices That Will Minimize Mold GrowthThe following practices will help minimize the growth of molds inside homes located in hot, humid climates like Florida's. Mold growth on the outside of homes is not covered here and readers are cautioned that these practices may not be applicable in other climates. •Air Conditioner Operation: Always set the fan mode switch of your air conditioner thermostat in the AUTO position, never in the ON position. Why? When set to the ON position the blower fan runs continuously and the moisture which has condensed on your air conditioner's evaporator coil during cooling is re-evaporated and blown back into your home before it can drain off the coil and out of your home. This causes the relative humidity in your home to be significantly greater than if the air conditioner thermostat fan mode switch is set to the AUTO position. Even in the "auto" position, some air conditioners run the blower for 1-3 minutes after the compressor shuts off. To maximize dehumidification, it is best to disable this feature. A qualified mechanical contractor should be able to disable this feature so that the blower and compressor turn off simultaneously. •Air Conditioner Selection: If you are building a new home and can choose, then choose an air conditioning system with a variable speed air handler and an operating selection mode for "enhanced moisture removal." This is a good option for multiple reasons: the units are SEER 14 , they are quiet and they do a better job removing moisture, particularly under part load conditions. They accomplish this by starting the air handler fan at a lower speed during each cycle, which improves moisture removal. The variable speed fan motors are intrinsically more energy efficient-- they use as little as 270 W/1000 cfm of air flow as compared with the typical 450 W/1000 cfm. Each of the major manufacturers have them. When used properly, they are ideal for Florida's climate. •Air conditioner sizing. Oversizing of air conditioners is common. The more an air conditioner is oversized, the poorer its humidity removal performance, especially at higher thermostat settings. This is because, during each air conditioning on cycle, the moisture removal does not reach full capacity for about the first three minutes of operation. The more the system is oversized, the shorter the on-cycle during which moisture is removed. Thus, if a home is properly sized with a 2-ton air conditioner and a 4-ton system is installed, the 2-ton machine would do a much better job removing moisture even though the 4-ton machine had twice the nameplate humidity removal capability (Btu/hr). Remember, the shorter the air conditioner on-cycle, the less chance for effective moisture removal. This fact can be clearly seen in the figure below, which is taken from FSEC test data. •Thermostat Set Point: Set the summertime thermostat to the highest temperature that is comfortable for you. A temperature of 78 F or greater is recommended. Never lower the thermostat temperature in an attempt to control humidity in your home – this will not work. Why? Setting the thermostat temperature lower does two things that are counter to your goal of reducing the moisture content of the materials in your home. First, contrary to what you might intuit, it actually slightly increases the indoor relative humidity in your home! And second, and more important, it decreases the temperature of the materials in your walls, floors and ceilings of your home, thereby significantly increasing the potential for actual moisture condensation on these elements of your home. A side benefit of setting your thermostat at higher temperatures is that it significantly decreases cooling energy costs. In Florida, each one oF increase in thermostat temperature decreases air conditioning cooling energy costs by about 10.The following table of results from experiments that were conducted by the Florida Solar Energy Center illustrate the relative humidity impacts of both thermostat set point temperature and the position of the fan mode switch. Impact of Indoor Set Temperature and Fan Operation Modeon Interior Relative Humidity*Indoor T(oF)Avg RH (Fan= Auto)CompressorRun Time FractionAvg RH (Fan=On)80 550.276577600.357076670.607071740.8075 * AC operated alternatively for at least one week in each mode.• •Interior Doors: Interior doors should be kept open when air conditioning unless your heating and cooling system has a fully ducted return air system from each room of the home or unless specific and sufficient return air transfer pathways have been installed to ensure that closed interior doors do not result in space depressurization problems in the home. •Space Pressurization: It is important that homes in hot, humid climates be pressurized slightly with respect to outdoors. The reason is fairly straightforward but not very obvious. If homes are depressurized with respect to the outdoors, then hot, humid outdoor air will be pulled through the very small air pathways that exist in all building envelopes (walls, ceilings, floors, etc.). To get from the outside of the home to the inside, this air often must follow circuitous pathways. For example, the air may enter the wall system high on the exterior where an outdoor light fixture is mounted and exit the wall system low on the indoors where an electrical outlet is located. If the home is air conditioned, the gypsum wallboard will be relatively cold — often colder than the dewpoint temperature of the humid outdoor air that must flow along that gypsum wallboard to that indoor electrical outlet. In Florida, it is not uncommon for summertime outdoor air dewpoint temperatures to be greater than 80 F! When this occurs, the colder gypsum wallboard can act just like that ice tea glass that "sweats" like crazy when you take it outdoors — it can condense the moisture out of the air that is flowing along its back surface on its way to the electrical outlet that is serving as its pathway into the air conditioned home. As illustrated in the figure below, this can result in moisture accumulation within the wallboard, which, in turn, can result in significant mold growth. The above wall diagrams from detailed computer simulations that model the combined impacts of heat, moisture and air transport illustrate the importance of this air flow phenomena. The wall on the left bounds a space that is pressurized with respect to the outdoors and the one on the right bounds a space that is depressurized. The 2 Pa (Pascal) pressure gradient is very, very small — there are 101,325 Pa in one atmosphere. Clearly, it is the direction of the pressure gradient rather than its magnitude that is critically important here. You very much want your home slightly overpressurized in hot, humid climates so that dry, cool indoor air is pushed out of the home through the walls (figure on left) rather than have hot, humid outdoor air sucked into the home through the walls (figure on right). Fortunately, it is relatively easy to pressurize a home — all that is necessary is that slightly more air be brought into the home than is exhausted. This normally requires a positive mechanical ventilation system.Things that may cause space depressurization in homes:oExhaust Fans (bathroom, kitchen, attic, crawlspace, etc.) oCloths dryers oSupply duct leaks oInsufficient return air pathways due to interior door closure. •Ceiling Fans: Use ceiling fans in the summer — they allow you to be comfortable at higher air conditioning thermostat temperatures. And they will save air conditioning energy costs if you use the most efficient ones (see Gossamer Wind Series - available at Home Depot stores) and turn them off when no one is in the room. •Measure the RH in Your Home: Invest in a digital temperature and relative humidity (RH) sensor (about $20) and observe your indoor relative humidities. Two sources for these sensors are Radio Shack and Therma-Stor Products (1-800-533-7533). During the hot summer months, with the air conditioning on, the RH should not exceed 55 during the day on a regular basis. If it does, you probably have problems either with leaks in your duct system or with your air conditioner unit itself – it could be too large, improperly charged or have insufficient air flow across the coil. Consult with a qualified air conditioning expert or mechanical engineer to determine the problem.The highest relative humilities in your home are likely to occur during mild weather when your air conditioner is not needed during the day. In Florida, the outdoor relative humidity reaches very near 100 on most nights, regardless of daytime temperatures. If your home is open to the outdoors during these periods, the materials in your home will adsorb moisture from this very humid air, again regardless of the temperature. If this moisture is not removed during the following day, the "water activity" of the materials in your home can stay at or above 75 for extended periods and mold is likely to grow on these surfaces. If you have RH levels exceeding 70-75 for extended periods, and find it difficult to control mold growth on surfaces in your home in spring, fall and winter, you may need to invest in some type of dehumidification system and should consult with a qualified mechanical system expert for advice.•Vinyl Wall Covering: Impermeable interior surfaces like vinyl wall coverings can result in severe mold problems in hot humid climates such as Florida's. Moisture coming from outdoors can accumulate within the gypsum wallboard that is behind the vinyl wall covering. This normally occurs as a result of house depressurization where outdoor air is being sucked into the home through the very minute air pathways that exist in all normal wall systems. Where this problem occurs, outbreaks of mold often occur beneath the wall covering on the surface of the gypsum wallboard. This mold growth is normally characterized by pinkish to yellowish "splotches" on the vinyl wall covering. The moisture accumulation also can be severe enough to cause the gypsum wallboard to badly deteriorate and become "mushy." If you have noticed these symptoms, a building science professional should be consulted. Positive pressurization of your home is one method of minimizing the potential occurrence of this problem. •Return Air Pathways: It is important that there be sufficient air flow pathways for the supply air that is delivered to each room of a home to return to the air conditioner's air handler unit (the box with the blower fan). Otherwise, the part of the home containing the main return to the air handler unit will be "starved" for air, resulting in depressurization of this space with respect to the outdoors. If this occurs, outdoor air will be drawn through the small pathways that exist in the exterior building envelope. In hot, humid climates like Florida's, these air flows can result in the accumulation of moisture within the gypsum wallboard, especially if it has vinyl wall covering. This, in turn, can result in the rapid and abundant growth of molds — remember, the cellulose (paper) on gypsum wallboard makes an excellent, preferred mold food. If room doors are kept open, there will be sufficient return air pathways. However, if rooms doors are closed, the rule-of-thumb is that there should be about 50 square inches of "free" air transfer area for each 100 cfm (cubic feet per minute) of supply air to the room. In this case, the term "free" means a simple, clear hole in the wall between the room and the remainder of the home. If, for appearance and privacy reasons, this hole is to be covered by grilles on each side of the wall, then the overall return air pathway area needs to be increased by about 40 to account for the air flow resistance of the grilles, or about 70 square inches per 100 cfm of supply air flow.•Bathrooms: Most bathrooms, particularly tile in and around showers and tubs is regularly wet. As a result, most bathrooms grow mold and require regular cleaning. A weak solution of water and common household bleach can be used to regularly clean these areas and keep them free of mold. Low-noise bathroom fans are also recommended to remove excess moisture during periods when it is being generated by bathing or showering. (See also exhaust fans.) •Whole-House Ventilation Fans — Opened Windows: Avoid the use of these fans when it is humid outdoors, especially if you have noticed mold growth in your home or you are having trouble controlling the relative humidity in your home. In addition, avoid opening windows for long periods when it is humid outside (e.g. during nights and evenings) if you are experiencing mold growth problems in your home. •Air Conditioner Maintenance: Change your filters regularly and use pleated filters. Once a year get your air-conditioners professionally serviced. At that time make sure coils are clean, the condensate drains properly and that the drain pan has no mold. •Exterior Water Management: Redirect water away from the home's exterior — redirect sprinklers so that they don't spray on the walls. Do not landscape with hills that direct water flow towards the home. Use gutters. Keep down-spouts free of debris and direct outflow away from the home. •Small Leaks: Even small water leaks will cause mold problems. Rainwater leaks from improperly flashed windows, wall and roof penetrations and plumbing leaks should be promptly repaired. Periodically inspect under sinks and vanities for signs of water leakage. Use you nose and smell for "musty" or "earthy" odors – they usually indicate the presence of mold. Fix all water leaks promptly. •Water Damage: Water damage from flooding or other major water intrusion in homes should be dried within 24 hours if at all possible. For severe flooding and severe water damage for more than 48 hours, a trained restoration professional should be consulted regarding cleanup procedures. Readers are also encouraged to consult the American Red Cross web site at the bottom of this page for further information. •Moisture Condensation: Single-pane, metal windows, which are common in Florida, generally condense water on the inside in winter. It is good practice to remove this condensation before it can run off and be absorbed by porous materials like wood casing or gypsum wallboard. Condensation can also occur on other surfaces in homes. If condensation is noticed on interior surfaces in summer, it may indicate a number of problems, including inability to control indoor humidity; air conditioner supply registers aimed directly at interior surfaces; duct leakage problems and pressure imbalances; or all of the above. If you notice indoor surface condensation during summer, you should contact a professional to help diagnose the cause. However, during early spring when the ground is still cool, it is quite possible to experience some condensation on tile floors on slab-on-grade homes that are open to the outdoors. This should not be a regular occurrence, but only something that occurs rarely. •Exhaust Fans: Make sure the clothes dryer vent goes all the way to the outside of the home, not to the crawlspace or to the inside of the attic or the house. The same goes for bathroom vent fans. It is also important for the kitchen range hood to vent to the exterior as well. Recalculating stove and kitchen vents provide no removal of stovetop moisture and inferior control of cooking related pollutants compared with venting completely to the outdoors. A major deterrent to the use of kitchen range hoods is noise. Choose an ultra-quiet, inline ventilation fan for your range hood. Kitchen and bath exhaust fans should only be used while cooking or using the bathroom to remove excess moisture generated by these activities. It is best practice to either have bathroom vent fans interlocked with the light switch so they do not get left on or have them switched by a manual timer that will shut them off after a period of time, or control them by humidistat. oClosets: Fungi like the dark and closets are rarely supplied with conditioned air as a standard part of air conditioning systems. As a result it is not all that uncommon to have mold or mildew occur in closets, especially on leather. Leaving the closet doors open to provide more conditioned air circulation or leaving the closet lights on with the door closed so as to raise the temperature (which lowers the RH) can reduce these problems. oHouse Plants: Minimize live house plants, especially if you have any trouble controlling the relative humidity in your home.Nasty sounding stuff isn’t it? Stachybotrys Chartarum, Penicillium and Aspergillus – Toxic, Health threatening molds, found in homes, businesses and schools near you.These molds can be found anywhere that dark and dank conditions permit them to grow. When you try to kill them, they take to the air, spreading themselves with no forethought to the damage they can cause. They are just trying to survive. And they’re good at it.Remember the story of the opening of King Tut’s tomb? Mold was reportedly thick and pungent. The treasure hunters and laborers took ill after spending long days inside, and many died, but we now know it was NOT because the tomb was “ cursed.”Only in the past decade or less have we begun to understand the potential health risks associated with exposure to mold contamination. Spores can be inhaled, absorbed through the skin or ingested on our food. And, because some people are more susceptible than others, one person may become debilitated by exposure to mold in the home, another person sharing the same environment is essentially unaffected.Infants, the elderly and anyone with immune system deficiencies due to disease, chemotherapy, etc. are particularly susceptible to serious illness following exposure to microbial contamination.Many species of mold and mildew (or the mycotoxins they produce) can cause or aggravate a number of ailments. Common effects from molds such as stachybotris atra, penecillium, cladosporium and several strains of aspergillius, are asthma, pneumonitis, upper respiratory problems, sinusitis, dry cough, skin rashes, stomach upset, headaches, disorientation and bloody noses. Numerous other species of mold and mildew are also toxic, and many mycotoxins are known carcenogens. Severe exposures can lead to internal bleeding, kidney and liver failure and pulmonary emphysema.Such health risks due to the presence of mold in a dwelling are a serious concern to occupants, and can pose potential liability for owners of rental properties. Contamination of residential properties by toxic mold and mildew is becoming more and more prevalent. Although mankind has been aware for thousands of years that mold thrives in damp conditions, only recently have we begun to understand how dramatically its presence can impact us. Toxic mold and mildew is not discerning, affecting both old and new buildings.The odor or appearance of mold can signal a variety of problems. The moisture that gives life to fungal growth in older buildings can be either a moisture problem created by tenant’s use, or water intrusion due to leaky components, or both. In new construction, it could also indicate the existence of construction defects”I Don’t Remember Mold Being a Concern Twenty Years Ago”Molds and mildew are everywhere in our environment, and in nature, they perform the very important function of breaking down organic matter. These microbes need very little to survive and thrive: air, moisture (liquid water isn’t necessary, most species propagate with only 40-60 relative humidity), and food. Fungi are especially fond of building materials like sheetrock and wood, carpets, and enjoy soft goods such as furniture and clothes. Every home offers a smorgasbord for eager spores!There are a number of reasons for the increasing problem of mold and mildew in our homes, not the least of which is the fact that Title 24 to the United States Code of Federal Regulations, relating to energy conservation, brought new construction methods and materials, meaning that buildings don’t “breathe” as freely, trapping moisture vapors inside the building. Most newer homes are built on concrete slabs, which emit moisture for several years as they cure, and because they are porous, moisture from the soil beneath the slab also vaporizes into the living space. Leaky roofs, windows, and plumbing, whether caused by poor construction or lack of timely repairs, often result in colonization of mold and mildew spores. The microbial spores become airborne, spreading inside wall cavities, behind cabinets and wallpaper, and through ventilation systems. When moisture and temperature conditions are favorable, widespread contamination can occur in a surprisingly short time. IntroductionA 1999 Mayo Clinic Study cites molds as the cause of most of the chronic sinus infections that inflict 37 million Americans each year. Recent studies also link molds to the soaring asthma rate. Molds have been an under recognized health problem, but that is changing. Health-care professionals now know that molds can cause allergies, trigger asthma attacks and increase susceptibility to colds and flu. Anyone with a genetic predisposition can become allergic if exposed repeatedly to high enough levels. Last year Dr. David Sherris at the Mayo Clinic performed a study of 210 patients with chronic sinus infections and found that most had allergic fungal sinusitis. The prevailing medical opinion has been that mold accounted for 6 to 7 percent of all chronic sinusitis. The Mayo Clinic study found that it was 93 percent - the exact reverse. Newsweek, 12/4/00 Neither mold nor spores cause illness, other than allergy and/or infections. It is the mycotoxins released when the molds' food source (moisture) is severed. To help comprehend how small mycotoxins are, one common housefly could carry about 7.35 billion attached to its external body hairs. Consequently, IF 50,000 constitute a theoretically lethal dose, a housefly could carry a lethal dose for over 100,000 individuals. Outdoor spores are not a usual cause of toxicity, (except for allergies and infection), but when growing inside, molds produce toxins, which are in much higher concentration and can cause illness. Indoor mold spores indicate mold growth, which indicates mycotoxin production. Currently, we can measure spores, identify spores, but it is difficult to measure mycotoxins. Stachybotrys produces at least 170 known mycotoxins, and probably more that have not been identified.Molds, a subset of the fungi, are ubiquitous on our planet. Fungi are found in every ecological niche, and are necessary for the recycling of organic building blocks that allow plants and animals to live. Included in the group "fungi" are yeasts, molds and mildews, as well as large mushrooms, puffballs and bracket fungi that grow on dead trees. Fungi need external organic food sources and water to be able to grow. Molds can grow on cloth, carpets, leather, wood, sheet rock, insulation (and on human foods) when moist conditions exist (Gravesen et al., 1999). Because molds grow in moist or wet indoor environments, it is possible for people to become exposed to molds and their products, either by direct contact on surfaces, or through the air, if mold spores, fragments, or mold products are aerosolized. Many molds reproduce by making spores, which, if they land on a moist food source, can germinate and begin producing a branching network of cells called hyphae. Molds have varying requirements for moisture, food, temperature and other environmental conditions for growth. Indoor spaces that are wet, and have organic materials that mold can use as a food source, can and do support mold growth. Mold spores or fragments that become airborne can expose people indoors through inhalation or skin contact. Mold spores are fungal reproductive cells of about the same size as pollen grains. They can occur in various colors and shapes, such as round, spheroid, banana-shaped, or tadpole-shaped. They can occur in enormous quantities, and at all times of the year. Mold spores can be found and generated at serious levels indoors, as well as out. Fungi can invade healthy individuals and can cause a variety of effects. The most common response is allergies (runny nose, sneezing, sinus congestion, and skin rashes). Allergies result from inhaling mold spores. When environmental conditions become conducive, many molds develop fungal hyphae, small appendages containing spores. These spores are analogous to plant seeds and can be spread by the billions when air currents pass over the hyphae. Even dead fungi are capable of causing allergic symptoms. Mold spores can be airborne, and get indoors through doors, windows or cracks and crevices, or be carried in from the outdoors on shoes and clothing. Building materials that were left outside before use can harbor viable (living) mold spores for many years. Indoor environments are never entirely free of molds. As a general rule of thumb, in a "healthy" building the concentration of spores and the mix of mold species tend to be similar to outdoor environment levels. If buildings are air-conditioned, or windows and doors are kept closed in summer, the concentration of spores within should even be lower than outside levels. High moisture (above 70.0 relative humidity) in a building will invariably lead to mold, mildew, or other microbial growth. This growth requires four things: a nutrient source (found in most building materials), proper temperature (usually found indoors), mold spores (ubiquitous in ambient air), and water. Some molds also produce toxins (poisons) which are thought to be useful in killing competing molds in their vicinity. These toxins can also have deleterious effects on humans when ingested, inhaled or in contact with the skin. The fungi that produce toxins are known as toxigenic fungi. Many fungi produce secondary toxic metabolites which can produce adverse health effects (mycotoxicoses) in animals and human. These metabolite are collectively known as mycotoxins. The latest World Health Organization (WHO) publication on mycotoxins, available in 1990, indicated that there are more than 200 mycotoxins produced by a variety of common fungi. Historically, mycotoxins are a problem to farmers and food industries and in Eastern European and third world countries. However, many toxigenic fungi, such as Stachybotry chartarum (also known as Stachybotrys atra) and species of Aspergillus and Penicillium, have been found to infest buildings with known indoor air and building-related problems. Many indoor air quality related problems have been traced to the growth of fungus in buildings. Almost without exception, these buildings have usually had chronic water or moisture problems. Molds can have an impact on human health, depending on the nature of the species involved, the metabolic products being produced by these species, the amount and duration of individual's exposure to mold parts or products, and the specific susceptibility of those exposed. Health effects generally fall into four categoriesAllergy, Infection, Irritation, Toxicity Toxicity Molds can produce other secondary metabolites such as antibiotics and mycotoxins. Antibiotics are isolated from mold (and some bacterial) cultures and some of their bacteriotoxic or bacteriostatic properties are exploited medicinally to combat infections. Mycotoxins are also products of secondary metabolism of molds. They are not essential to maintaining the life of the mold cell in a primary way (at least in a friendly world), such as obtaining energy or synthesizing structural components, informational molecules or enzymes. They are products whose function seems to be to give molds a competitive advantage over other mold species and bacteria. Mycotoxins are nearly all cytotoxic, disrupting various cellular structures such as membranes, and interfering with vital cellular processes such as protein, RNA and DNA synthesis. Of course they are also toxic to the cells of higher plants and animals, including humans. Mycotoxins vary in specificity and potency for their target cells, cell structures or cell processes by species and strain of the mold that produces them. Higher organisms are not specifically targeted by mycotoxins, but seem to be caught in the crossfire of the biochemical warfare among mold species and molds and bacteria vying for the same ecological niche. Mycotoxin Effects - The class of small fungal secondary metabolites which has been given the name "mycotoxins" is definitely known to include many compounds which are highly toxic to vertebrates (such as humans). Most of the well characterized toxic effects are from animal feeding situations, either natural mycotoxicosis outbreaks caused by contaminated animal feed, or laboratory experiments based on feeding (or connected artificial experimental situations such as parenteral injection of purified toxins into experimental animals). Ingestion of mycotoxin-contaminated foods by humans results in similar symptoms. Toxic effects have also been found in laboratory experiments in which animals are exposed to mycotoxins via the respiratory tract. In cases involving humans and airborne exposure, the most suggestive of a direct mycotoxin effect are those in which heavily mold-exposed workers develop severe symptoms reminiscent of animal mycotoxicoses or contaminated-food mycotoxicoses Volatile Organic Compound’s
Tell others about
this page:
Comments? Questions? Email Here